
A NEW PYRIDINE SYNTHESIS STARTING FROM α , β -UNSATURATED CARBONYL COMPOUNDS

Katsuhiro Konno, Kimiko Hashimoto, Haruhisa Shirahama and Takeshi Matsumoto Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060, Japan

<u>Abstract</u> — A new and mild synthetic method of substituted pyridines from α , β -unsaturated carbonyl compounds through a sequence involing (1) 1, 4-conjugate addition of thiophenol (2) condensation with a methylene ketone (3) Pummerer rearrangement to an unsaturated 1, 5-dicarbonyl compound (4) treatment with ammonia is described.

Aromatic ring formation from nonaromatic precursor, aromatic annelation, is of renewed interest in the field of pyridine synthesis¹⁾ as well as phenol synthesis.²⁾ For complex natural product synthesis containing these moieties, however, it still remained to be of limited use.

In the course of synthetic studies on acromelic acid A , a neurotoxin from a poisonous mushroom³⁾, we needed to construct a 2,5-disubstituted pyridine ring from an α -substituted α , β -unsaturated aldehyde. Our efforts to solve this problem resulted in a mild and versatile method of pyridine synthesis.⁴

Cyclization of unsaturated 1, 5-dicarbonyl compounds with a variety of ammonia sources is a facile process for pyridine formation.⁵⁾ However, difficluties encountered in preparation of unsaturated 1,5-dicarbonyl compounds made it of limited use in synthesis. In our method the problem was solved by the use of the Pummerer reaction.⁶⁾

As shown in Scheme 1, an α , β -unsaturated ketone bearing phenylthio group at δ -position such as 3 can be regarded as a synthetic equivalent to ketoaldehyde 5 since the phenylthiomethyl group may be convertible to aldehyde by the Pummerer reaction. Moreover, ketosulfide 3 is expected to be readily accessible because the reaction sequence $1 \xrightarrow{-2} 2 \xrightarrow{-3}$ is a feasible and conventional process.

The results are summarized in Table 1. Typical example is as follows (entry 5): Treatment of methyl vinyl ketone (1: $R_1 = H$, $R_2 = Me$) with thiophenol and triethylamine (1.2 equiv each) in THF at 0 °C for 30 min afforded adduct 2 in 98 % yield, which was condensed with methyl isobutyl ketone (7: $R_3 = H$, $R_4 = iBu$, 2 equiv) by treatment with LDA/THF-HMPA at -78 °C for 15 min, and then dehydrated by SOCl₂ (2 equiv)-DMAP (4 equiv) in CH₂Cl₂ at 0 °C for 15 min to give ketosulfide 3 in 82 % yield. The crude sulfoxide obtained from 3 (1.2 equiv NaIO₄/H₂O-MeOH, rt, 2h) was treated with 10 equiv trifluoroacetic anhydride and 25 equiv pyridine in CH₂Cl₂ at 0 °C for 20 min to afford a rearranged product, which was immediately cyclized, in one-pot operation, with methanolic ammonia at 0° \rightarrow rt for 16h. Thus, 2-isobutyl-4-methylpyridine was obtained in 80% yield.

The yields were usually high in each step and the reactions proceeded under quite mild conditions. Especially, the highly mild and accelerative conditions of the Pummerer reaction is noteworthy.⁷⁾ Pyridines with a variety of substitution pattern could be prepared by a variety of combination of the starting unsaturated carbonyl compounds and ketones. In addition, ready availability of the two components makes this method advantageous.⁸⁾

Table 1.

		ketone	pyridine ^a	yield(%) ^b
1	сно 	Ph	Ph	49
2	сно	\bigcirc_{\geq_0}		58
3	СНО			-омем 52
4	СНО	\bigcirc_{s_0}		-омем 55
5	0>			60
6	0	\bigcirc_{\approx_0}		60
7	Остомем	Lo	OMEM	51

a. Spectral data (1 H NMR, IR, UV and HR-MS) of these compounds were consistent with the assigned structures or those reported in literature. b. Isolated overall yield of pyridines. References and Notes

- (a) M. A. Tius, A. Thurkauf and J. W. Truesdell, <u>Tetrahedron Letters</u>, 23, 2819 (1982), (b) K. T. Potts, M. J. Cipullo, P. Ralli and G. Theodoridis, <u>J. Org. Chem.</u>, <u>47</u>, 3027 (1982).
- 2) (a) D. L. Boger and M. D. Mullican, J. Org. Chem., 45, 5002 (1980), (b) M. A. Tius, A. Thurkauf and J. W. Truesdell, <u>Tetrahedron Letters</u>, 23, 2823 (1982), (c) M. A. Tius and S. Ali, J. Org. Chem., 47, 3163 (1982).
- K. Konno, H. Shirahama and T. Matsumoto, <u>Tetrahedron Letters</u>, 24, 939 (1983).
- A part of this work was presented at the 17th Congress of Heterocyclic Chemistry, in Sapporo, Japan, August 28, 1985, Abstr., p. 133.
- 5) (a) E. Klinsberg, "The Chemistry of Heterocyclic Compounds. Pyridine and Its Derivatives", Interscience, New York (1960), (b) R. A. Abramovitch, "The Chemistry of Heterocyclic Compounds. Supplemet of Pyridine and Its Derivatives." Wiley-Interscience, New York (1974).
- 6) For applications of the Pummerer reaction to natural product synthesis, see: (a) T. Matsumoto, H. Shirahama, A. Ichihara, H. Shin, S. Kagawa, F. Sakan, S. Matsumoto and S. Nishida, <u>J. Am. Chem. Soc.</u>, <u>90</u>, 3280 (1968).
 (b) P. Magnus, T. Gallagher, P. Brown and J. C. Huffman, <u>J. Am. Chem. Soc.</u>, <u>106</u>, 2105 (1984).
 (c) T. Ikeda and C. R. Hutchinson, <u>J. Org. Chem.</u>, <u>49</u>, 2837 (1984).
- 7) In our laboratory, a various acceleration conditions for the Pummerer reaction by using pyridine as additive to acetic anhydride were studied in the cource of the total syntheses of illudin S and M; T. Matsumoto, H. Shirahama, F. Sakan and K. Takigawa, <u>Bull. Chem. Soc. Jpn.</u>, 50, 325 (1977).
- 8) The utility of this method in natural product synthesis has already been demonstrated by the synthesis of acromelic acid A; K. Konno, K. Hashimoto, Y. Ohfune, H. Shirahama and T. Matsumoto, <u>Tetrahedron Lett.</u>, 27, 607 (1986).

(Received in Japan 26 April 1986)